61 research outputs found

    Pandemic influenza control in Europe and the constraints resulting from incoherent public health laws

    Get PDF
    © 2010 Martin et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: With the emergence of influenza H1N1v the world is facing its first 21st century global pandemic. Severe Acute Respiratory Syndrome (SARS) and avian influenza H5N1 prompted development of pandemic preparedness plans. National systems of public health law are essential for public health stewardship and for the implementation of public health policy[1]. International coherence will contribute to effective regional and global responses. However little research has been undertaken on how law works as a tool for disease control in Europe. With co-funding from the European Union, we investigated the extent to which laws across Europe support or constrain pandemic preparedness planning, and whether national differences are likely to constrain control efforts. Methods: We undertook a survey of national public health laws across 32 European states using a questionnaire designed around a disease scenario based on pandemic influenza. Questionnaire results were reviewed in workshops, analysing how differences between national laws might support or hinder regional responses to pandemic influenza. Respondents examined the impact of national laws on the movements of information, goods, services and people across borders in a time of pandemic, the capacity for surveillance, case detection, case management and community control, the deployment of strategies of prevention, containment, mitigation and recovery and the identification of commonalities and disconnects across states. Results: Results of this study show differences across Europe in the extent to which national pandemic policy and pandemic plans have been integrated with public health laws. We found significant differences in legislation and in the legitimacy of strategic plans. States differ in the range and the nature of intervention measures authorized by law, the extent to which borders could be closed to movement of persons and goods during a pandemic, and access to healthcare of non-resident persons. Some states propose use of emergency powers that might potentially override human rights protections while other states propose to limit interventions to those authorized by public health laws. Conclusion: These differences could create problems for European strategies if an evolving influenza pandemic results in more serious public health challenges or, indeed, if a novel disease other than influenza emerges with pandemic potential. There is insufficient understanding across Europe of the role and importance of law in pandemic planning. States need to build capacity in public health law to support disease prevention and control policies. Our research suggests that states would welcome further guidance from the EU on management of a pandemic, and guidance to assist in greater commonality of legal approaches across states.Peer reviewe

    Comparison of Magnetic Resonance Imaging and Serum Biomarkers for Detection of Human Pluripotent Stem Cell-Derived Teratomas.

    Get PDF
    The use of cells derived from pluripotent stem cells (PSCs) for regenerative therapies confers a considerable risk for neoplastic growth and teratoma formation. Preclinical and clinical assessment of such therapies will require suitable monitoring strategies to understand and mitigate these risks. Here we generated human-induced pluripotent stem cells (iPSCs), selected clones that continued to express reprogramming factors after differentiation into cardiomyocytes, and transplanted these cardiomyocytes into immunocompromised rat hearts post-myocardial infarction. We compared magnetic resonance imaging (MRI), cardiac ultrasound, and serum biomarkers for their ability to delineate teratoma formation and growth. MRI enabled the detection of teratomas with a volume >8 mm(3). A combination of three plasma biomarkers (CEA, AFP, and HCG) was able to detect teratomas with a volume >17 mm(3) and with a sensitivity of more than 87%. Based on our findings, a combination of serum biomarkers with MRI screening may offer the highest sensitivity for teratoma detection and tracking

    Red haloBODIPYs as theragnostic agents: The role of the substitution at meso position

    Get PDF
    Three different molecular designs based on BODIPY dye have been proposed as photosensitizers (PSs) for photodynamic therapy (PDT) by the inclusion of halogen atoms (Iodine) at 2,6-positions and with extended conjugation at 3, 5-positions and varying the substitution at meso position. The synthesis is described and their main photophysical features including singlet oxygen production and triplet states were characterized by absorption and fluorescence spectroscopy (steady-state and time-correlated) and nanosecond transient absorption spectroscopy. The results were compared with the commercial Chlorin e6. The three new red-halogen-BODIPYs showed a great balance between singlet oxygen generation (Phi(Delta)>= 0.40) and fluorescence (Phi(fl)>= 0.22) for potential application on PDT, and particularly in theragnosis. In vitro experiments in HeLa cells were done to study their performance and to elucidate the best potential candidate for PDT.This research was funded by the Basque Government, grant numbers IT912-16, IT-1302-19 and IT1639-22. This work is supported by Min-isterio de Ciencia, Innovacion y Universidades-Agencia Estatal de Investigacion (MCI/AEI) , grant numbers MAT2017-83856-C3-2-P and 3-P, PID2020-114347RB-C32, PID2020-114755 GB-C32 and the Uni-versity of the Basque Country (UPV/EHU) , grant number COLAB19/01. R.P.M. thanks UPV/EHU for postdoctoral felowship (DOCREC 20/55) . Open Access funding is provided by University of Basque Country

    Of mice and men: molecular genetics of congenital heart disease

    Get PDF

    Characterization of the molecular mechanisms underlying increased ischemic damage in the aldehyde dehydrogenase 2 genetic polymorphism using a human induced pluripotent stem cell model system

    No full text
    Nearly 8% of the human population carries an inactivating point mutation in the gene that encodes the cardioprotective enzyme aldehyde dehydrogenase 2 (ALDH2). This genetic polymorphism (ALDH2*2) is linked to more severe outcomes from ischemic heart damage and an increased risk of coronary artery disease (CAD), but the underlying molecular bases are unknown. We investigated the ALDH2*2 mechanisms in a human model system of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) generated from individuals carrying the most common heterozygous form of the ALDH2*2 genotype. We showed that the ALDH2*2 mutation gave rise to elevated amounts of reactive oxygen species and toxic aldehydes, thereby inducing cell cycle arrest and activation of apoptotic signaling pathways, especially during ischemic injury. We established that ALDH2 controls cell survival decisions by modulating oxidative stress levels and that this regulatory circuitry was dysfunctional in the loss-of-function ALDH2*2 genotype, causing up-regulation of apoptosis in cardiomyocytes after ischemic insult. These results reveal a new function for the metabolic enzyme ALDH2 in modulation of cell survival decisions. Insight into the molecular mechanisms that mediate ALDH2*2-related increased ischemic damage is important for the development of specific diagnostic methods and improved risk management of CAD and may lead to patient-specific cardiac therapies

    Costimulation-adhesion blockade is superior to cyclosporine A and prednisone immunosuppressive therapy for preventing rejection of differentiated human embryonic stem cells following transplantation.

    No full text
    RATIONALE: Human embryonic stem cell (hESC) derivatives are attractive candidates for therapeutic use. The engraftment and survival of hESC derivatives as xenografts or allografts require effective immunosuppression to prevent immune cell infiltration and graft destruction. OBJECTIVE: To test the hypothesis that a short-course, dual-agent regimen of two costimulation-adhesion blockade agents can induce better engraftment of hESC derivatives compared to current immunosuppressive agents. METHODS AND RESULTS: We transduced hESCs with a double fusion reporter gene construct expressing firefly luciferase (Fluc) and enhanced green fluorescent protein, and differentiated these cells to endothelial cells (hESC-ECs). Reporter gene expression enabled longitudinal assessment of cell engraftment by bioluminescence imaging. Costimulation-adhesion therapy resulted in superior hESC-EC and mouse EC engraftment compared to cyclosporine therapy in a hind limb model. Costimulation-adhesion therapy also promoted robust hESC-EC and hESC-derived cardiomyocyte survival in an ischemic myocardial injury model. Improved hESC-EC engraftment had a cardioprotective effect after myocardial injury, as assessed by magnetic resonance imaging. Mechanistically, costimulation-adhesion therapy is associated with systemic and intragraft upregulation of T-cell immunoglobulin and mucin domain 3 (TIM3) and a reduced proinflammatory cytokine profile. CONCLUSIONS: Costimulation-adhesion therapy is a superior alternative to current clinical immunosuppressive strategies for preventing the post-transplant rejection of hESC derivatives. By extending the window for cellular engraftment, costimulation-adhesion therapy enhances functional preservation following ischemic injury. This regimen may function through a TIM3-dependent mechanism

    Comparison of Magnetic Resonance Imaging and Serum Biomarkers for Detection of Human Pluripotent Stem Cell-Derived Teratomas

    No full text
    The use of cells derived from pluripotent stem cells (PSCs) for regenerative therapies confers a considerable risk for neoplastic growth and teratoma formation. Preclinical and clinical assessment of such therapies will require suitable monitoring strategies to understand and mitigate these risks. Here we generated human-induced pluripotent stem cells (iPSCs), selected clones that continued to express reprogramming factors after differentiation into cardiomyocytes, and transplanted these cardiomyocytes into immunocompromised rat hearts post-myocardial infarction. We compared magnetic resonance imaging (MRI), cardiac ultrasound, and serum biomarkers for their ability to delineate teratoma formation and growth. MRI enabled the detection of teratomas with a volume >8 mm3. A combination of three plasma biomarkers (CEA, AFP, and HCG) was able to detect teratomas with a volume >17 mm3 and with a sensitivity of more than 87%. Based on our findings, a combination of serum biomarkers with MRI screening may offer the highest sensitivity for teratoma detection and tracking
    corecore